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Abstract - A novel clustering method using an artificial neural
network (ANN) is presented to identify the coherent geherators
for dynamic equivalents of power systems. First, a new frequency
measure is devised to indicate the degree of coherency among
system generators. Incorporating with the frequency measure, a
neural network implementation of the K-means algorithm is then
proposed to identify clusters of coherent generators. The rotor
speeds nt three selected Instants in time are used as the feature
patterns for tive learning algorithm. To verify the effectiveness of
the proposed method, extensive analyses are performed on two
different power systems of varying sizes with rather encouraging
results.
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1. INTRODUCTION

In the dynamics study of large power systems, it is
necessary to model the external system by their dynamic
equivalents to improve the solution speed and to reduce the
problem to solvable size [1-6]. One approach of building up a
dynamic equivalent is to identify generators in the external
system with high coherency. A group of generators in the
external system is said to be coherent if they are similar in
terms of terminal behavior. The formation of coherent group
depends on both the nature and location of the disturbance.
With the growing size of the interconnected power systems,
the coherency identification becomes increasingly difficult.

In the last two decades, many notable methods of
coherency-based dynamic equivalencing have been developed
to reduce the computational effort required in power system
dynamics study [1-11). Lee and Schweppe [7] suggested a
pattern recognition approach to identify coherent generators,
which was based on the criteria involving generator inertia,
admittance, and machine acceleration. Spalding et al. (8]
determined coherent generators using the pre-fault stable
operaling point and the post-fault unstable equilibrium point
(UEP). Podmore [3] proposed a method of coherency
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detection by solving a set of linearized swing equations, and
treating the rotor trajectories through a clustering algorithm.
Recently, Haque et al. [9] utilized the rotor angles and the
electrical coupling measure to identify coherent machines.
Afterwards, they [10] proposed the concept of energy function
at the approximate unstable equilibrium points (AUEP) as well
as the relative rotor angles to identify coherent groups.

The main purpose of this research is to develop an
efficient clustering method suitable for the identification of
coherent generators in power systems. This method is based
on the measuring coherency in terms of frequency deviation
and the application of ANN technique. One of the major -
strengths of artificial neural network lies in its excellent ability
to pattern recognition [11-15]. On the other hand, the problem
of coherency identification is equivalent to clustering
generators into various coherent groups, each group being
related to different patterns. In view of this, this paper takes
advanlages of the ANN technique for coherency analysis. The
representative input patterns of the ANN consist of the rotor
speeds of each generator at three distinct instants during the
transient period. As will be shown later, the speed feature is
superior to the angle feature and appears to be reliable patterns
for ANN classification. A ncural network implementation of
the K-means algorithm [12,16] using the adaptive resonance
theory (ART) model [14] is then proposed for the
classification of coherent generators. Experimental results
obtained show that the presented clustering method is
computationally efficient and seems a promising way to
perform clustering in large-scale power systems.

2. FORMULATION OF COHERENCY IDENTIFICATION
2.1 Power System Model
In the standard simplified description of an n-machine

power system, the disturbed motion of the i-th machine with
respect to a synchronously rotating frame can be expressed by

8 =
M;®; =P, — P, fori=1,2,...n. %)
where
n
P = EfGy + ) (C; sind; + Dy cos 8; @
i
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D; = B;E;Gy

The following standard notation is used:

8, @;: rotor angle and rotor speed with respect to the
synchronously rotating reference frame,

M;: inertia constant,

P,,;: mechanical input power,

P,;: electrical output power,

E; : voltage behind the direct axis transient reactance,
G;;: driving point conductance,

B;;: transfer susceptance,

G;;: transfer conductance.

ij

In the above, the network of the power system has been
reduced to the generator internal bus. With common
simplifying assumptions, M;, P,,;, and E; are assumed to be
constant throughout the transients, and all loads are modeled
as constant impedances.

2.2 Coherency Consideration
A generator pair (i, j) is considered to be coherent if [9]

6,(1)-06;(t) € [Dj—¢, Dy +¢] forO0<st<t,, ()

where §;(1) and é'j(t) are the rotor angles of the i-th and j-th

machine respectively, D,’j is one particular constant, € is a
small tolerance of rotor angle, and t;,x is the maximum time
of interest for coherency identification. A group of generators
is coherent if each pair of generators in the group is coherent.
Each generator pair (i, j) is said to be perfectly coherent if the
tolerance € equals zero. An alternative formulation
considering coherency is to check the absolute relative rotor
angle deviations,

5,j(t+At)—6,-j(l)So (4)

where 5ij(t) =8;(1)~6 j(1) and o denotes tolerance. The

rotor angles of the -th and j-th generator for a small time
increase At could be approximated as:

8;(t+ At) = 8;(1) + w;(t) At )
Si(t+A)=8;(1)+w;(1)At )

where @;(r) and @;(1) denote respectively the rotor speeds

of the i-th and j-th generator at the instant of t. Subtracting (6)
from (5) gives:

81+ At) = 6;;(t) = (w;(t) — w (1)) At Q)

For a fixed time interval Af, comparing (4) with (7), a new
frequency measure of coherency can be derived as
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wi(t)—w,-(t) <p ®)

where p denotes a tolerance parameter. Therefore, a pair of

machines (i, j) can be considered coherent if they satisfy (8)
during study period. As will be illustrated in Sec. 4.2, the
speed criterion can provide computational advantage over
angle criterion and shows to be more reliable feature patterns
in the use of an artificial neural network for the coherency
identification.

2.3 Feature Selection

A key step in the application of pattern recognition
approach is to select a proper set of features with which the
input data will be represented. In this study, the speeds at three
distinct instants are used for each generator as patterns
representative of the dynamic behavior of the generator. They
consist of the following features:

(a) w;(t.): the rotor speed at the instant of fault clearing,

(b) w;(t. +0.2): the rotor speed at ¢. + 0.2 s in the post-
fault period,

(c) w;(1, +0.4): the rotor speed at ¢, + 0.4 s in the post-
fauit period.

The choice of these features is mainly motivated by the
simple idea that two machines having the same speed at three
distinct instants of time should have parallel trajectories and
hence should be coherent if those speeds can properly
represent the terminal behavior of each machine. In general,
the fault duration of a physical power system is short and the
variation of generator acceleration is small during that period.
Usually, the abrupt change of the system occurs at the instant
of fault clearing. Therefore, item (a) is adopted to account for
faulted acceleration, which governs the system dynamics for
the fault-on period. Because generators that are coherent
during the faulted period may actually fall apart in the post-
fault period, items (b) and (c) are used to accommodate the
post-fault system dynamics. Since the natural frequencies of
the rotor angle oscillations typically range from 0.25 Hz to 2
Hz [3], the sample time of 0.2 s is satisfactory for the
representation of the post-fault system dynamics.’

2.4 Prediction of Generator Rotor Speeds

The rotor speed of each generator can be evaluated by
directly integrating the system differential equation. However,
since the intention of this study is to fast identify coherency
without simulation of the entire system dynamics, it is most
desirable to improve the computing speed. The Taylor series
expansion (TSE) technique [9,17] is one of the most efficient
numerical methods suitable for the prediction of rotor
behavior. Our experience shows that the TSE gives good
agreement with the actual trajectories up to 0.6 s by taking up
to the 4-th order derivatives. If the prediction on a larger time
interval is wanted, a multi-step TSE in both the fault-on and
the post-fault period may be used without significant loss of
accuracy [9]. In addition, larger clearing time seldom occurs in
physical situations, since it corresponds to a fault condition
that may not leave a network in an emergency state.
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3. ARTIFICIAL NEURAL NETWORK COMPUTING

In recent years, artificial neural network computing has
become an important branch of artificial intelligence, which
has numerous applications in the engineering field. Among
these applications, the pattern recognition is one of the task
that the artificial neural network succeeds. In this respect, the
ART model [14] may be one of the notable representatives in
this category. The ART network is like an adaptive pattern
recognition system. It can quickly and stably learn to
categorize input patterns in real-time process, and permit fast
adaptive search for best match and variable error criterion in
response fo external environment. In view of its excellent
ability in pattern recognition, the ART network can be
beneficially used for the implementation of the K-means
algorithm {12,16] for coherency identification.

3.1 Architecture of the ART Neural Network

Fig. 1 depicts the schematic structurc of the ART
employed in the present study. It comprises both the input
layer and the output layer. The rotor speeds at three selected
instants in time are used for each generator as patterns
representative of.the dynamic behavior of the generator. So
three nodes are required in the input layer for the identification
of coherent generators. The nodes in the input layer receive an
input feature pattern and an image of the input pattern is
generated by using a set of weighted parameters. This image is
further enhanced in the process characterized by the output
layer. The output layer is a strong lateral inhibition network
called MAXNET [15]. Each unit of the MAXNET has a
positive feedback on itself and a negative feedback on the
other units. Only one output unit in the output layer remains
active to indicate a classification of the input pattern.

Cluster 1 Cluster 2 Cluster k

MAXNET

Po= (6 F2 Fha ) .

Fig. 1. The architecture of the ART neural network.
3.2 Neural Network Implementation of K-means Algorithm

In this section, we use the ART model to implement the
K-means clustering algorithm, which was developed by Pao et
al. [12] for critical clearing time assessment. The K-means
algorithm [16] is based on the minimization of a performance
index that is defined as the sum of the squared distances from
all points in a cluster domain to the cluster center. The

clustering process is performed according to the similarities
discovered among the input features, and is controlled by a
distance threshold called the vigilance parameter (VP). The .
VP is a user-made parameter which must be judiciously
determined from an engineering knowledge of the system
requirements. The overall solution procedure for coherency
identification can be summarized in the following steps:
Step 1.  Read system data, fault condition, and the
number of §tudy generators,
Step 2; Build the prefault, fault-on, and postfault
admittance matrices,
Step 3:  Compute the input pattemns of the external
generators :
P; =(F;}, F;2, Fi3)
Fip = a(t.)
Fiy=wi(t.+0.2)
Fi3=w(t.+04)

for i=1,2,...ng ©9)

where

ne: the number of external generators,

P;: the pattern vector of the i-th generator,
F,,, : the m-th feature of P;.

Produce the first cluster,

k=1

N k= 1

G =Py

or, equivalently,

(B11, B12, By3) = (Fy;, F3, Fy3) (10)

where

k: the number of existing clusters,

N} ¢ the number of patterns belonging to G ,

.Cy : the center of the k-th cluster,

By, the m-th coordinate of C.

Read the input pattern vectors by Ietting i—2

Read the i-th input pattern P; = (F;}, Fj,, F;3)

and calculate the Euclidean dlsmnce EDJ

between P; = (F;;, F;5, F;3) and the

C; =(B;;,Bj3, B;3) .

m forj=12,..k (11)
m=]

Find the minimum Euclidean distance to the
existing clusters,
EDp =min(EDJ-) for j=1,2,...k
If EDp>VP, then create a new cluster center,
k=k+1
Ck =P
Or, equivalently,
(Be s Bea, Bys) = (Fyp, Fip, Fi3)
NK = 1

Step 6:

(12)

13)

else,
the pattern P; = (F;}, F;,, F;3) belongs to the
cluster p, and update the coordinates of C,,,
N 1
= plB;r,r{f N+1F”"
P

Bpn = N, form=1,2,3 (14)
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N,=N,+1
Step 9:  If pattern vector P; changes from the cluster "o"

(the old one) to "k" (the new one), then the
coordinates of C, are modified as:

N,=N,-1
1
BroY =iv—°+—13;’5 ——F;,, form=1,2,3 (15)
N, N,

Step 10: Repeat Step 6-Step 9 until all the patterns have

been compared with the existing clusters,’

Step 11: If the clustering process has converged, end;

otherwise, return to Step S.

With the advent of neurocomputer, the parallel distributed
processing capability can potentially endow the ANN based
clustering algorithm with a speed advantage over other series
processing in the application of large power systems.

4, SIMULATION RESULTS AND DISCUSSION
4.1 Test Condition

To verify the effectiveness of the proposed method, a
comprehensive testing of various fault locations is conducted
on two different systems:

(a) The 10-machine New England system,

(b) The 34-machine Taipower system.
The disturbance is a three phase short circuit fault on the
generator buses (GB) and the load buses (LB), cleared with
and without line switching. Unless otherwise stated, the fault
clearing time is set 0.2 s, and the study period is [0, 2] s
throughout the simulation. Statistical assessments for
evaluating the coherency degree of a generator pair are defined
in terms of

(16)

where ¢; is the absolute angle difference of the i-th sample

with respect to the initial separation, £ and €max denote the

corresponding average and maximum angle difference of the
rotor trajectories, respectively, over the study period [0, tmax].
The sample time of the statistical data is set 0.01 s. Totally,
200 samples are compared for each generator pair over [0, 2]
s. For a coherent group containing many machines, pairwise
comparisons must be made to indicate the coherency level of
this cluster.

Similarly, define the maximum average Eg,,, and

maximum absolute angle difference € over all coherent

£ max
groups as follows:

Egmar = mar{€1.Ez.....Ep) )
= max

Eglnlll

{Elmax’ €2maxr--» epmax}
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where £; and £imax denote the average and maximum

absolute angle difference of the j-th coherent group, and P is
the number of coherent groups identified.

4.2 The New England System

The first test system is a 345 KV bulk transmission
network of New England, which consists of 10 machines, 39
busbars, and 46 lines. The single line diagram of the system is
shown in Fig. 2 with the data found in [18]. Generator 10 is an
equivalent power source representing parts of the USA-
Canadian interconnection system. Generator 10 was not
considered in the coherency identification process because of
its very high inertia constant.

Fig. 2. The New England system [18].

Case 1: (3¢ fault at bus #29, fault clearing at 0.2 s, line 29-26
tripped)

The generator G9 is selected as the study system. TABLE

I shows the identified results for different input features and

VP. It is obvious that both &, .4, and g max increase as VP

increases in value irrespective of the features employed.
According to the need for reduction in model complexity, one
can specify an appropriate vigilance parameter. TABLE II
illustrates the influence of choosing the rotor angle and speed
as input features on coherency study. Also, the influence of the
number of features used for ANN classification is explained
with two features (sampled at 0.2 s and 0.4 s) and three
features (sampled at 0.2 s, 0.4 s, and 0.6 s), respectively. The
sampled swing curves of some representative generators are
depicted in Fig. 3. Obviously, an inspection from the swing

TABLEI
IDENTIFIED RESULTS FOR DIFFERENT INPUT FEATURES

input Coherent grou, i
feal‘::'es group Eg max Eg max

(deg) (deg)

0.03 6,7) 0.4 0.7

0.05 (6,7)(2,3) 0.6 1.4

Angle 0.0/ (4.6,)(2,3) 1.7 5.7
0.1 *(4,5,6,1)(2,3) 3.9 14.3

0.12 (4,5,6,1(1,2,3) 4.7 16.4

0.14 (1-8) 6.36 33.5

0.2 (X)) 0.4 0.7

0.4 6,7(2,3) 0.6 1.4

Speed 0.5 (4,6,7)(2,3) 1.7 5.7
0.6 *(2,34,6,D 34 10.5

1.0 (1-7) 5.8 33.5

2.4 (1-8) 6.36 33.5
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TABLE
THE INFLUENCE OF FEATURES AND NUMBER OF FEATURES
tmax | No.of | C ) F €max
(s) |features Sﬁ ) | (deg)
0.6 2 K 3.46
0.6 2 1.34 1 2.53
2.0 3 6,57 14.26.

ROTOR ANGLE (DEG)

Eess8 o838

PR T T B S N U O O B B A A |

1416 18 2

) 02 04 06 08 1 12
TIME (S)

Flg 3. Sampled swing curves for a fault 29*-26 of the New England system
with the fault cleared at 0.2 s.

curves shows that the generator pair (G6,GS) is more coherent
than the generator pair (G6,G3) over [0, 0.6] s and conversely
for [0, 2] s, as evidenced by comparing their respective € and

€max in TABLE II. Physically, the generators with higher

coherency must be clustered before those with lower

coherency when the distance threshold increases. If the

observation is over [0, 0.6] s interval, both the angle and speed
criteria work reliably for coherency classification, since
smaller ED corresponds to more coherent generator. pair. In
addition, two features are sufficient for correct coherency
identification. However, when the observation is extended to
[0, 2] s, the clustering process cannot yield correct results
even with the addition of angle feature at 0.6 s. Referring to
TABLE I, as VP increases from 0.07 to 0.14, the resulting
clustering sequence using the angle . features is
(G6) = (G6,G5) = (G6,G5,G3). More features must be added
for correct classification. In contrast, as VP increases from 0.5
to 1.0, the use of three speed features yields the correct
clustering sequence: = (G6) =(G6,G3) =(G6,G3,G5).
Therefore, the rotor angles may be attractive features for
coherent identification up to the last observation time, but
cannot reliably represent the entire system dynamics from
then onwards. On the other hand, because the speed can
predict the tendency of the rotor trajectory, the speed criterion
requires less number of features than the angle criterion for
the identification of coherent generators with the same study
period.

Case 2: (3¢ fault at bus #25, fault clearing at 0.6 s, without
line tripping)

This case is intentionally introduced to illustrate the use of
multi-step Taylor series expansion for a larger clearing time.
The generator G8 is the study system. The swing curves of
some representative generators with the fault cleared at 0.6 s
are shown in Fig. 4. Apparently, the generators (G2,G3) and
(G4-G7) form two coherent groups from the observed rotor
trajectories. To assess the accuracy of the TSE, the root-square

errors (physical distance, abbreviated PD) of rotor speed at
three distirict instants of G2 and G3 are listed in TABLE III,
which are 2.1 rad/s and 2.0 rad/s, respectively. The Euclidean
distances of G2 and G3 are also included for comparison. In
view of the great reduction in the error of ED, the presented
frequency measure can be favorably used to minimize the
errors from the TSE, if the TSE is utilized to predict the rotor
speed. More significantly, both feature distributions from the
above two methods can identify coherency very reliably.

1.2
g 1
8087 G2,G3

7067 . .
§ 041 G4,35,66,G7
v 02
1RE
= 02
8 -0.4:

06 .o

0 02 04 08 08 1 12 14 16 18 2
TIME ()

Fig. 4. Swing curves for fault bus #25 of the New England system with the
fault cleared at 0.6 s.

TABLE IIf
COMPARATIVE RESULTS OF THE STEP-BY-STEP AND TAYLOR
SERIES EXPANSION

Gen. Step-by- Step Taylor sertes expansion Error
no. .
o Ji06) i (0.8) o5 (1.0) ;" (0.6) Loy (0.8) oy (1.0) PD

Ge] 60 [ 11.8 J20.7 5.6 9.8 20.2 2.1

G3] 63 [ 118 | 199 59199 19.4 2.0

L= (.83 ED*=0.86 ED*-ED=0.01

ED= "Z(w.(t,.) o;(1,))

4.3 The Taipower System

3
PD= \, Yl (,)- 0 (1,))
n=1

The second test system is the Taipower system, which is a
practical medivm-sized system in Taiwan. This system has a
longitudinal structure covering a distance of 400 KM from
north to south. It is divided into three areas: northern area,
central area, and southern area, as shown in Fig. 5. This
system contains 191 buses, 34 generators and 234 lines. The
highest transmission system voltage is 345 KV,

Case 1: (3¢ fault at bus #17, fault clearing at 0.2 s, line 17-18
tripped)

In this case, the generator G25 is the study system. Fig,
6(a) shows the number of identified clusters and the numbeér of
iterations needed for the convergence of learning process for
different vigilance values. If VP is set 0, there are totally 33
clusters in the external system, since each isolated machine is
considered as a (singleton) cluster. The set of resulting clusters
can only decrease as the VP increases in value. It should be
noted that the presented method always converges with the
maximum number of iterations not exceeding four. For
example, Fig. 6(b) shows the convergence process of the
clustering algorithm with VP=0.9. It is obvious that the
clustering algorithm converges to a stable pattern after three
iterations. TABLE IV lists the identified coherent groups
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Fig. 6. The number of clusters and iterations for different vigilance values.
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Fig. 5. One-line diagram of the Taipower system.
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TABLE IV
IDENTIFIED COHERENT GROUPS WITH DIFFERENT VIGILANCE
PARAMETERS
vP Coherent group Egmax | Egumax
(deg) (deg)
0.1 (1,7,10,11,12)(3,3),(21,23) 0.1 0.3
0.2 (1,3,4,7,10,T1,12)(2,6X38,9) 0.6 I.5
(21-23)26,27)(15,17)
0.3 (1,3,4,7-12)(2,6),(15,17) 1.2 20
(5,21-23)(26,27,30)(28,29)
0.4 (1,3,4,7-12)(2,6),(15,17) 4.5 55
(5,21-23)(26,27,30)(28,29)(32,34)

along with the related angle differences observed over [0, 2] s
interval for different vigilance values. When VP increases
from 0.1 to 0.4, the corresponding Eg max and €, increase

from 0.1° and 0.5° t0 4.5° and 5.5°, respectively. In general,
the smaller the vigilance value, the smaller the average and
maximum angle difference of the coherent generators, i.e., the
higher degree of coherency the machines are aggregated.

Case 2: (3¢ fault at bus #22, fault clearing at 0.2 s, line 22-23
tripped)

The gencrators G31 and G32 constitute the study system.
For a tolerance of 5°, four coherent groups are identified with
VP=0.4, as indicated by the feature distributions in Fig. 7. It is
worth noting that (G21,G23) and G22 belong to different
coherent groups. The swing curves of generators (G21-G23)
with the fault cleared at 0.2 s are shown in Fig. 8. Note that the
generators (G21-G23) are connected to the same bus # 15 with
identical generator inertia. However, the rotor trajectory of
G22 and that of G21 and G23 fall apart. Similar situation
occurs for G29 and G30. Hence, the traditional coherency
criteria, such as the distance measure [6,7] and generator
inertia (7], often adopted to identify coherent generalors may
not yield reliable results. On the other hand, the coherent
groups recognized by the presented clustering method
completely agree with those obtained by the time simulation.

14 -
13: GROUP 1 GROUP 3
2% " |-
- o
é f . ..‘B iiﬂ V.
B 2 " o "a * i<} . v
g oy :
6 .24 GROUP 2 GROUP 4
v
S . W(tc)
§ 3 . W(tc+0.2)
101 . v W(tc+0.4)
12 R I AT -
1 5 10 15 20 25 30
GENERATOR NO.

Fig. 7. Feature distributions for a fault 22*-23 of the Taipower system.

From the coherency study on two different power
systems, it is found that the coherent groups identified by the
presented clustering method in all cases conform to those
obtained through direct simulation of the dynamics. According
to the need for reduction in model complexity, one can select
an appropriate vigilance parameter to cluster the generators
into different groups with the specified level of coherency.
Based on the comparison of the response of the accuracy of

N
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equivalent with that of the actual system, our experience
revealed that if the VP is set 0.4, the swing curves are
clustered with the average angle difference less than 5°.

ROTOR ANGLE (DEG)
o
J W N R N B N S B S N

2 0z 04 06 08 1 12 14 18 18
TIME (5)

o

Fig. 8. Swing curves for a fault 22*-23 of the Taipower system with the fault
cleared at 0.2 s.

5. CONCLUSION

This paper has tackled the toughest part of the process of
producing dynamic equivalents in power systems through
coherency identification. An efficient clustering method based
on the use of an artificial neural network has been presented. It
can reliably predict clustering of generators at different levels
of coherency .as suggested by the vigilance parameters of the
ANN. A new frequency measure of coherency has first
attempted to identify the coherent groups for each particular
fault. Several computational advantages over the angle
criterion can be offered by the speed criterion in the ANN
implementation of the clustering algorithm:

(i) Since thé speed of the generator can predict the tendency
of the rotor trajectory, the number of input features

required for ANN classification can be reduced with the -

same study period.

(ii) Due to the reduction in the number of input features, the
computational effort required in the convergence of the
learning process can be considerably reduced.

(iii) In (8), the rotor speed can directly be used as input
feature for ANN since @;(0)=0. In contrast, the
relative rotor angle difference, as indicated in (4), must
be computed before the rotor angles are fed into the
ANN for coherency identification.

(iv) The presented frequency measure can be favorably used
to minimize the errors from the TSE, if the TSE is
utilized to predict the rotor speed on a longer time
interval.

Although in this study coherency identification has been
investigated using the simple classical modeling, more
accurate representation with refined generator and regulator
modeling could be used without significant alteration to the
clustering method.

ACKNOWLEDGMENT

The research was su(rponed in part by the Natjonal Science Council of
the Republic of China, under Grant No. NSC80-0404-E011-04.

ar
21

3]

(4]

[5)

(6]

(7]

9

(10}
(1
(12]
(13

[14)

[15]
(16]
nn

(18]

REFERENCES

A. Chang, and M. M. Adibi, "Power System Dynamic Equivalents,”
IEEE Trans., vol. PAS-89, pp.1737-1744, Nov./Dec. 1970.
F. F. Wy, and N. Narasimhamurthi, "Coherency Identification for
Power System Dynamic Equivalents, " IEEE Trans., vol. CAS-30,
no.3, PP. 140-147, March 1983,
R. Podmore, "Identification of Coherent Generators for Dynamic
Equivalents,” JEEE Trans. vol. PAS-97, no. 4, pp. 1344-1354,
July/Aug. 1978.
G. Troullinos, and J. Dorsey, "Coherency and Model Reduction : State
fpa;e Point of View, " IEEE Trans., vol. PWRS-4, no. 1, pp. 988-992,

989.
J. H. Chow, J. R. Winkelman, M. A. Pai, and P. W. Sauer, "Singular
Perturbation Analysis of Large-Scale Power System," Int. Journal of
Electric Power and Energy System, vol. 12, no. % pp. 117-126, 1990.
M. A. Pai, and R. P. Adgaonkar, “Electromechanical Distance Measure
for Decomposition of Power System,” Int. Journal of Electrical Power
and Energy System, vol. 6, no. 4, pp. 249-254, 1984.
S. T. Y. Lee, and F. C. Schweppe, "Distance Measure and Coherency
Recognition for Transient Stability Equivalents ," IEEE Trans. vol.
PAS-92, pp.1550-1557, July/Aug. 1973.
B. D. Spalding, H. Yee, and D. B. Goudie, "Coherency Recognition for
Transient Stability Studies Using Singular Points,” [EEE Trans. vol.
PAS-96, no. 4, pp.1368-1375, July/August 1977.
M. H. Haque, and A. H. M. A. Rahim, "An Efficient Method of
Identifying Coherent Generator Using Taylor Series Expansion,” IEEE
Trans., vol. PAS-3, no.3, pp.1112-1118, August 1988.
M. H. Haque, and A. H. M. A. Rahim, "Identification of Coherent
Generators Using Energy Function," IEE Proc. , vol.137, Pt. C, no. 4,
pp.255-260, July 1990.
M. Djukanovic, D. J. Sobajic, and Y. H. Pao, "Antificial Neural
Network Based Identification of Dynamic Equivalents," Journal of
Electric Power Systems Research, vol. 24, pp. 39-48, 1992.
Y. H. Pao, and D. . Sobajic, "Autonomous Feature Discovery for
Critical Clearing Time A iment,” Symposium on Expert System
Applications to Power System, Stockholm, Sweden, August 1988.
T. Kohonen, Self-Organization and Associative Memory, 3rd edition,
Springer- Verlag Press, Berlin, 1984. :
G. A. Carpenter and S. Grossberg, "ART2, Stable Self-Organization of
Pattern Recognition Codes for Analog Input Patterns,” Proceedings of
the First International Conference on Neural Networks, San Diego,
IEEE, volll, pp.727-735, 1987.
R. P. Lippman, "An Introduction to Computing with Neural Nets,"
IEEE ASSP Magazine, pp. 4-22, April 1987.
R. O. Duda, and P. E. Hart, Pattern Classification and Scene Analysis,
Wiley, New York, 1973.
M. Ribbens-Pavella, T. Van-Cutsem, R. Dhifaui, and B. Toumi,
"Energy Type Lyapunov-Like Direct Criteria for Rapid Transient
Stability Analysis, " Proc. of the international Symposium on Power
System Stability, May 13-14, Ames, lowa, 1985,

. Athay, R. Podmore and S. Virman, "A Practical Method for Direct
Analysis of Transient Stability,” /EEE Trans., vol. PAS-98, no. 2, pp.
573-584, March/April 1979.

BIOGRAPHIES

Mang-Hui Wang (5'90) was born in Taiwan on
June 22, 1963. He received his M. S. Degree in
electrical engineering from National Taiwan
Institute of Technology, Taipei, in 1990. He is
currently a Ph. D. candidate in the electrical
engineering department of National Taiwan
Institute of Technology, Taipei. His main
interest is power system analysis and control.

Hong-Chan Chang (M'87) was born in Taipei,
Taiwan on March 5, 1959. He received his B.
S., M. S., and Ph. D. degrees all from the
Electrical Engineering Department of National
Cheng Kung University in 1981, 1983, and
- 1987, respectively. In August, 1987, he joined
National Tajwan Institute of Technology as an
associate professor in the electrical engineering
department. His major areas of research
include power system stability and neural
network application to power systems.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 10:43 from IEEE Xplore. Restrictions apply.



